Approximation of Octilinear Steiner Trees Constrained by Hard and Soft Obstacles
نویسندگان
چکیده
The novel octilinear routing paradigm (X-architecture) in VLSI design requires new approaches for the construction of Steiner trees. In this paper, we consider two versions of the shortest octilinear Steiner tree problem for a given point set K of terminals in the plane: (1) a version in the presence of hard octilinear obstacles, and (2) a version with rectangular soft obstacles. The interior of hard obstacles has to be avoided completely by the Steiner tree. In contrast, the Steiner tree is allowed to run over soft obstacles. But if the Steiner tree intersects some soft obstacle, then no connected component of the induced subtree may be longer than a given fixed length L. This kind of length restriction is motivated by its application in VLSI design where a large Steiner tree requires the insertion of buffers (or inverters) which must not be placed on top of obstacles. For both problem types, we provide reductions to the Steiner tree problem in graphs of polynomial size with the following approximation guarantees. Our main results are (1) a 2–approximation of the octilinear Steiner tree problem in the presence of hard rectilinear or octilinear obstacles which can be computed in O(n log n) time, where n denotes the number of obstacle vertices plus the number of terminals, (2) a (2 + ε)–approximation of the octilinear Steiner tree problem in the presence of soft rectangular obstacles which runs in O(n) time, and (3) a polynomial time (1.55 + ε)– approximation of the octilinear Steiner tree problem in the presence of soft rectangular obstacles.
منابع مشابه
Hardness and Approximation of Octilinear Steiner Trees
Given a point set K of terminals in the plane, the octilinear Steiner tree problem is to find a shortest tree that interconnects all terminals and edges run either in horizontal, vertical, or ±45 diagonal direction. This problem is fundamental for the novel octilinear routing paradigm in VLSI design, the socalled X-architecture. As the related rectilinear and the Euclidian Steiner tree problem ...
متن کاملA Near Linear Time Approximation Scheme for Steiner Tree Among Obstacles in the Plane
We present a polynomial time approximation scheme (PTAS) for the Steiner tree problem with polygonal obstacles in the plane with running time O(n log n), where n denotes the number of terminals plus obstacle vertices. To this end, we show how a planar spanner of size O(n log n) can be constructed that contains a (1 + ǫ)-approximation of the optimal tree. Then one can find an approximately optim...
متن کاملConstrained Steiner trees in Halin graphs
In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.
متن کاملStatistical Alignment via k-Restricted Steiner Trees
When relating a set of sequences by a phylogeny, we are essentially constructing a Steiner tree connecting the sequences in the space of all finite sequences. Finding an optimal Steiner tree is in most formulations hard, so population genetics and phylogenetics have often used spanning trees as an approximation for computational expediency. In this assessment you will be asked to investigate an...
متن کاملSteiner Trees with Degree Constraints: Structural Results and an Exact Solution Approach
In this paper we study the Steiner tree problem with degree constraints. Motivated by an application in computational biology we first focus on binary Steiner trees in which all node degrees are required to be at most three. We then present results for general degree-constrained Steiner trees. It is shown that finding a binary Steiner is NP-complete for arbitrary graphs. We relate the problem t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006